44 research outputs found

    SLA-Based Continuous Security Assurance in Multi-Cloud DevOps

    Get PDF
    Multi-cloud applications, i.e. those that are deployed over multiple independent Cloud providers, pose a number of challenges to the security-aware development and operation. Security assurance in such applications is hard due to the lack of insights of security controls ap- plied by Cloud providers and the need of controlling the security levels of all the components and layers at a time. This paper presents the MUSA approach to Service Level Agreement (SLA)-based continuous security assurance in multi-cloud applications. The paper details the proposed model for capturing the security controls in the o ered application Se- curity SLA and the approach to continuously monitor and asses the controls at operation phase. This new approach enables to easily align development security requirements with controls monitored at operation as well as early react at operation to any possible security incident or SLA violation.The MUSA project leading to this paper has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 644429

    Cyber Hygiene Maturity Assessment Framework for Smart Grid Scenarios

    Get PDF
    Cyber hygiene is a relatively new paradigm premised on the idea that organizations and stakeholders are able to achieve additional robustness and overall cybersecurity strength by implementing and following sound security practices. It is a preventive approach entailing high organizational culture and education for information cybersecurity to enhance resilience and protect sensitive data. In an attempt to achieve high resilience of Smart Grids against negative impacts caused by different types of common, predictable but also uncommon, unexpected, and uncertain threats and keep entities safe, the Secure and PrivatE smArt gRid (SPEAR) Horizon 2020 project has created an organization-wide cyber hygiene policy and developed a Cyber Hygiene Maturity assessment Framework (CHMF). This article presents the assessment framework for evaluating Cyber Hygiene Level (CHL) in relation to the Smart Grids. Complementary to the SPEAR Cyber Hygiene Maturity Model (CHMM), we propose a self-assessment methodology based on a questionnaire for Smart Grid cyber hygiene practices evaluation. The result of the assessment can be used as a cyber-health check to define countermeasures and to reapprove cyber hygiene rules and security standards and specifications adopted by the Smart Grid operator organization. The proposed methodology is one example of a resilient approach to cybersecurity. It can be applied for the assessment of the CHL of Smart Grids operating organizations with respect to a number of recommended good practices in cyber hygiene.This project has received funding from the European Union Horizon 2020 research and innovation program under grant agreement No. 787011 (SPEAR

    Towards Self-Protective Multi-Cloud Applications: MUSA – a Holistic Framework to Support the Security-Intelligent Lifecycle Management of Multi-Cloud Applications

    Get PDF
    The most challenging applications in heterogeneous cloud ecosystems are those that are able to maximise the benefits of the combination of the cloud resources in use: multi-cloud applications. They have to deal with the security of the individual components as well as with the overall application security including the communications and the data flow between the components. In this paper we present a novel approach currently in progress, the MUSA framework. The MUSA framework aims to support the security-intelligent lifecycle management of distributed applications over heterogeneous cloud resources. The framework includes security-by-design mechanisms to allow application self-protection at runtime, as well as methods and tools for the integrated security assurance in both the engineering and operation of multi-cloud applications. The MUSA framework leverages security-by-design, agile and DevOps approaches to enable the security-aware development and operation of multi-cloud applications.European Commission's H202

    Continuous Quantitative Risk Management in Smart Grids Using Attack Defense Trees

    Get PDF
    Although the risk assessment discipline has been studied from long ago as a means to support security investment decision-making, no holistic approach exists to continuously and quantitatively analyze cyber risks in scenarios where attacks and defenses may target different parts of Internet of Things (IoT)-based smart grid systems. In this paper, we propose a comprehensive methodology that enables informed decisions on security protection for smart grid systems by the continuous assessment of cyber risks. The solution is based on the use of attack defense trees modelled on the system and computation of the proposed risk attributes that enables an assessment of the system risks by propagating the risk attributes in the tree nodes. The method allows system risk sensitivity analyses to be performed with respect to different attack and defense scenarios, and optimizes security strategies with respect to risk minimization. The methodology proposes the use of standard security and privacy defense taxonomies from internationally recognized security control families, such as the NIST SP 800-53, which facilitates security certifications. Finally, the paper describes the validation of the methodology carried out in a real smart building energy efficiency application that combines multiple components deployed in cloud and IoT resources. The scenario demonstrates the feasibility of the method to not only perform initial quantitative estimations of system risks but also to continuously keep the risk assessment up to date according to the system conditions during operation.This research leading to these results was funded by the EUROPEAN COMMISSION, grant number 787011 (SPEAR Horizon 2020 project) and 780351 (ENACT Horizon 2020 project)

    Service Level Agreement-based GDPR Compliance and Security assurance in (multi)Cloud-based systems

    Get PDF
    Compliance with the new European General Data Protection Regulation (Regulation (EU) 2016/679) and security assurance are currently two major challenges of Cloud-based systems. GDPR compliance implies both privacy and security mechanisms definition, enforcement and control, including evidence collection. This paper presents a novel DevOps framework aimed at supporting Cloud consumers in designing, deploying and operating (multi)Cloud systems that include the necessary privacy and security controls for ensuring transparency to end-users, third parties in service provision (if any) and law enforcement authorities. The framework relies on the risk-driven specification at design time of privacy and security level objectives in the system Service Level Agreement (SLA) and in their continuous monitoring and enforcement at runtime.The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 644429 and No 780351, MUSA project and ENACT project, respectively. We would also like to acknowledge all the members of the MUSA Consortium and ENACT Consortium for their valuable help

    Continuous Deployment of Trustworthy Smart IoT Systems.

    Get PDF
    While the next generation of IoT systems need to perform distributed processing and coordinated behaviour across IoT, Edge and Cloud infrastructures, their development and operation are still challenging. A major challenge is the high heterogeneity of their infrastructure, which broadens the surface for security attacks and increases the complexity of maintaining and evolving such complex systems. In this paper, we present our approach for Generation and Deployment of Smart IoT Systems (GeneSIS) to tame this complexity. GeneSIS leverages model-driven engineering to support the DevSecOps of Smart IoT Systems (SIS). More precisely, GeneSIS includes: (i) a domain specific modelling language to specify the deployment of SIS over IoT, Edge and Cloud infrastructure with the necessary concepts for security and privacy; and (ii) a [email protected] engine to enact the orchestration, deployment, and adaptation of these SIS. The results from our smart building case study have shown that GeneSIS can support security by design from the development (via deployment) to the operation of IoT systems and back again in a DevSecOps loop. In other words, GeneSIS enables IoT systems to keep up security and adapt to evolving conditions and threats while maintaining their trustworthiness.The research leading to these results has received funding from the European Commission’s H2020 Programme under grant agreement numbers 780351 (ENACT)

    Methodology to obtain the security controls in multi-cloud applications

    Get PDF
    What controls should be used to ensure adequate security level during operation is a non-trivial subject in complex software systems and applications. The problem becomes even more challenging when the application uses multiple cloud services which security measures are beyond the control of the application provider. In this paper, a methodology that enables the identification of the best security controls for multicloud applications which components are deployed in heterogeneous cloud providers is presented. The methodology is based on application decomposition and modelling of threats over the components, followed by the analysis of the risks together with the capture of cloud business and security requirements. The methodology has been applied in the MUSA EU H2020 project use cases as the first step for building up the multi-cloud applications’ security-aware Service Level Agreements (SLA). The identified security controls will be included in the applications’ SLAs for their monitoring and fulfilment assurance at operation.European Commission's H202

    Cloud Challenges towards Free Flow of Data

    Get PDF
    The Free Flow of Data is an emerging challenge to which the European Commission is currently working on with a legislative proposal due for the end of 2016, as part of the Digital Single Market (DSM) strategy. The proposal aims at tackling unjustified "restrictions on the free movement of data" among Member States. This paper analyses a number of cloud challenges of trustworthy inter-cloud environments identified by on-going EU-funded research initiatives dealing with security, privacy and data protection issues of Cloud solutions

    Introduction

    No full text
    International audienc
    corecore